M-POLYNOMIALS AND DEGREE-BASED TOPOLOGICAL INDICES OF SOME FAMILIES OF CONVEX POLYTOPES

MUHAMMAD RIAZ, WEI GAO, ABDUL QUDAIR BAIG

Abstract. In this article, we compute closed forms of M-polynomial for three general classes of convex polytopes. From the M-polynomial, we derive degree-based topological indices such as first and second Zagreb indices, modified second Zagreb index, Symmetric division index, etc.

Mathematics Subject Classification: 05C12, 92E10.
Key words and phrases: M-polynomial; degree-based topological index; convex polytope.

1. Introduction

A graph $G(V, E)$ with vertex set $V(G)$ and edge set $E(G)$ are connected, if there exists a connection between any pair of vertices in G. The degree of a vertex is the number of vertices which are connected to that fixed vertex by the edges. In a chemical graph the degree of any vertex is at most 4. The distance between two vertices u and v is denoted as $d(u, v) = d_G(u, v)$ and is the length of shortest path between u and v in graph G. The number of vertices of G, adjacent to a given vertex v, is the “degree” of this vertex, and will be denoted by d_v. The concept of degree in graph theory is closely related (but not identical) to the concept of valence in chemistry. For details on basics of graph theory, any standard text such as [1] can be of great help.

Several algebraic polynomials have useful applications in chemistry such as Hosoya polynomial (also called Wiener polynomial) [2] which plays a vital role in determining distance-based topological indices. Among other algebraic polynomials, M-polynomial [3] introduced in 2015, plays the same role in determining closed form of many degree-based topological indices [4, 5, 6, 7, 8]. The main
advantage of M-polynomial is the wealth of information that it contains about
degree-based graph invariants.

Definition 1.1. [3] The M-polynomial of \(G \) is defined as:

\[
M(G, x, y) = \sum_{\delta \leq i \leq j \leq \Delta} m_{ij}(G) x^i y^j \tag{1}
\]

where \(\delta = \text{Min}\{d_v|v \in V(G)\} \), \(\Delta = \text{Max}\{d_v|v \in V(G)\} \), and \(m_{ij}(G) \) is the
edge \(vu \in E(G) \) such that \(\{d_u, d_v\} = \{i, j\} \).

The first topological index was introduced by Wiener [9] and it was named
path number, which is now known as Wiener index. In chemical graph theory,
this is the most studied molecular topological index due to its wide applications;
see for details in [10, 11]. Randić index, [12] denoted by \(R_{-1/2}(G) \) and introduced
by Milan Randić in 1975 is also one of the oldest topological index. The Randić
index is defined as

\[
R_{-1/2}(G) = \sum_{uv \in E(G)} \frac{1}{\sqrt{d_ud_v}}, \tag{2}
\]

In 1998, working independently, Bollobás, Erdős, [13] and Amic et al. [14]
proposed the generalized Randić index which has been studied extensively by
both chemists and mathematicians [15]. Many mathematical properties have been
discussed [16]. For a detailed survey we refer the book [17].

The general Randić index is defined as:

\[
R_\alpha(G) = \sum_{uv \in E(G)} \frac{1}{(d_ud_v)^\alpha}, \tag{3}
\]

and the inverse Randić index is defined as \(RR_\alpha(G) = \sum_{uv \in E(G)} (d_ud_v)\alpha \).

Obviously \(R_{-1/2}(G) \) is the particular case of \(R_\alpha(G) \) when \(\alpha = -\frac{1}{2} \).

The Randić index is the most popular most often applied and most studied
among all other topological indices. Many papers and books such as [18, 19, 20]
are written on this topological index. Randić himself wrote two reviews on
his Randić index [21, 22] and there are three more reviews [23, 24, 25]. The
suitability of the Randić index for drug design was immediately recognized,
and eventually the index was used for this purpose on countless occasions. The
physical reason for the success of such a simple graph invariant is still an enigma,
although several more-or-less plausible explanations were offered.

Gutman and Trinajšić introduced first Zagreb index and second Zagreb index,
which are defined as: \(M_1(G) = \sum_{uv \in E(G)} (d_u + d_v) \) and \(M_2(G) = \sum_{uv \in E(G)} (d_u \times d_v) \) respectively. The second modified Zagreb index is defined as:

\[
m_M M_2(G) = \sum_{uv \in E(G)} \frac{1}{d(u)d(v)}. \tag{4}
\]

For details about these indices we offer [26, 27, 28, 29, 30] for the readers.
The Symmetric division index is defined as:

\[\text{SDD}(G) = \sum_{uv \in E(G)} \left\{ \min(d_u, d_v) + \max(d_u, d_v) \right\} \frac{\max(d_u, d_v)}{\min(d_u, d_v)} \]

(5)

Another variant of Randić index is the harmonic index defined as:

\[H(G) = \sum_{vu \in E(G)} \frac{2}{d_u + d_v} \]

(6)

The Inverse sum index is defined as:

\[I(G) = \sum_{vu \in E(G)} \frac{d_ud_v}{d_u + d_v} \]

(7)

The augmented Zagreb index is defined as:

\[A(G) = \sum_{vu \in E(G)} \left\{ \frac{d_ud_v}{d_u + d_v - 2} \right\}^3 \]

(8)

and it is useful for computing heat of formation of alkanes [31, 32].

The following table 1 relates some well-known degree-based topological indices with M-polynomial [3].

<table>
<thead>
<tr>
<th>Topological Index</th>
<th>Derivation from $M(G; x, y)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Zagreb</td>
<td>$(D_x + D_y)(M(G; x, y))_{x=y=1}$</td>
</tr>
<tr>
<td>Second Zagreb</td>
<td>$(D_x D_y)(M(G; x, y))_{x=y=1}$</td>
</tr>
<tr>
<td>Second Modified Zagreb</td>
<td>$(S_x S_y)(M(G; x, y))_{x=y=1}$</td>
</tr>
<tr>
<td>Randić Index</td>
<td>$(D_x^p D_y^p)(M(G; x, y))_{x=y=1}$</td>
</tr>
<tr>
<td>Inverse Randić Index</td>
<td>$(S_x D_y + S_y D_x)(M(G; x, y))_{x=y=1}$</td>
</tr>
<tr>
<td>Symmetric Division Index</td>
<td>$(D_x S_y + S_x D_y)(M(G; x, y))_{x=y=1}$</td>
</tr>
<tr>
<td>Harmonic Index</td>
<td>$2S_x J(M(G; x, y))_{x=1}$</td>
</tr>
<tr>
<td>Inverse sum Index</td>
<td>$S_x J D_x D_y (M(G; x, y))_{x=1}$</td>
</tr>
<tr>
<td>Augmented Zagreb Index</td>
<td>$S_x^2 Q_{-2} J D_x^2 D_y^2 (M(G; x, y))_{x=1}$</td>
</tr>
</tbody>
</table>

Table 1 Derivation of some degree-based topological indices from M-polynomial.

Where

\[D_x = x \frac{\partial f(x, y)}{\partial x}, \quad D_y = y \frac{\partial f(x, y)}{\partial y}, \quad S_x = \int_0^x f(t,y) \, dt, \quad S_y = \int_0^y f(x,t) \, dt, \quad J(f(x, y)) = f(x, x), \quad Q_n(f(x,y)) = x^n f(x,y). \]

2. Main Results

In this section we give our main results.

2.1. Computational aspects of Convex Polytopes T_n. The graph of convex polytope T_n can be obtained from the graph of convex polytope Q_n by adding new edges. It consists of three-sided faces, five-sided faces and n-sided faces. $a_{i+1}b_i$, i.e., $V(T_n) = V(Q_n)$ and $V(T_n) = V(Q_n) \cup \{a_{i+1}b_i : \ 1 \leq i \leq n\}$ as shown in figure 1.
Theorem 2.1. Assume we have a convex polytope T_n, then the M-Polynomial of T_n is

$$M(T_n; x, y) = 2nx^3y^3 + 2nx^3y^6 + nx^4y^4 + 2nx^4y^6 + nx^6y^6.$$ \hspace{1cm} (9)

Proof. Let $G = T_n$ be a convex polytope. It is easy to see from figure 1 that

$$|V(T_n)| = 4n, \quad |E(T_n)| = 8n.$$

The vertex set of S_n has two partitions:

$$V_1(T_n) = \{ u \in V(T_n) : d_u = 3 \}, \quad V_2(T_n) = \{ u \in V(T_n) : d_u = 4 \}, \quad V_3(T_n) = \{ u \in V(T_n) : d_u = 6 \},$$

such that

$$|V_1(T_n)| = 2n, |V_2(T_n)| = n, |V_3(T_n)| = n.$$

The edge set of T_n has three partitions:

$$E_1(T_n) = \{ e = uv \in E(T_n) : d_u = d_v = 3 \}, \quad E_2(T_n) = \{ e = uv \in E(T_n) : d_u = 3, d_v = 6 \}, \quad E_3(T_n) = \{ e = uv \in E(S_n) : d_u = d_v = 4 \},$$

$$E_4(T_n) = \{ e = uv \in E(T_n) : d_u = 4, d_v = 6 \}, \quad E_5(T_n) = \{ e = uv \in E(T_n) : d_u = d_v = 6 \},$$

From figure 1,

$$|E_1(T_n)| = 2n, |E_2(T_n)| = 2n, |E_3(T_n)| = n, |E_4(T_n)| = 2n, |E_5(T_n)| = n,$$
Let M_{SSD} be the double antiprism, then

\[
M(T_n; x, y) = \sum_{i \leq j} m_{ij}(T_n) x^i y^j
\]

\[
= \sum_{3 \leq 3} m_{33}(T_n) x^3 y^3 + \sum_{3 \leq 6} m_{36}(T_n) x^3 y^6 + \sum_{4 \leq 4} m_{44}(T_n) x^4 y^4
\]

\[
+ \sum_{4 \leq 6} m_{46}(T_n) x^4 y^6 + \sum_{6 \leq 6} m_{66}(T_n) x^6 y^6
\]

\[
= \sum_{uv \in E_1} m_{33}(T_n) x^3 y^3 + \sum_{uv \in E_2} m_{36}(T_n) x^3 y^6 + \sum_{uv \in E_3} m_{44}(T_n) x^4 y^4
\]

\[
+ \sum_{uv \in E_4} m_{46}(T_n) x^4 y^6 + \sum_{uv \in E_5} m_{66}(T_n) x^6 y^6
\]

\[
= |E_1| x^3 y^3 + |E_2| x^3 y^6 + |E_3| x^4 y^4 + |E_4| x^4 y^6 + |E_5| x^6 y^6
\]

\[
= 2nx^3 y^3 + 2nx^3 y^6 + nx^4 y^4 + 2nx^4 y^6 + nx^6 y^6.
\]

\[\square\]

Now we compute some degree-based topological indices of double antiprism from this M-polynomial.

Proposition 2.2. Let T_n be the double antiprism, then

1. $M_1(T_n) = 70n$.
2. $M_2(T_n) = 154n$.
3. $m_M(T_n) = \frac{73}{144}n$.
4. $R_a(T_n) = 2 \times 9^n n + 2 \times 18^n n + 16^n n + 2 \times 24^n n + 36^n n$.
5. $RR_a(T_n) = \frac{2n + 2n}{16^n} + \frac{n}{16^n} + \frac{2n + 2n}{24^n} + \frac{n}{24^n}$.
6. $SSD(T_n) = \frac{53}{3} n$.
7. $H(T_n) = \frac{99}{3} n$.
8. $I(T_n) = \frac{54}{3} n$.
9. $A(T_n) = \frac{5534785480}{370449850} n$.

Proof. Let

\[
M(T_n; x, y) = f(x, y) = 2nx^3 y^3 + 2nx^3 y^6 + nx^4 y^4 + 2nx^4 y^6 + nx^6 y^6
\]

Then

\[
D_x(f(x, y)) = 6nx^3 y^3 + 6nx^3 y^6 + 4nx^4 y^4 + 8nx^4 y^6 + 6nx^6 y^6,
\]

\[
D_y(f(x, y)) = 6nx^3 y^3 + 12nx^3 y^6 + 4nx^4 y^4 + 12nx^4 y^6 + 6nx^6 y^6,
\]

\[
(D_xD_y)(f(x, y)) = 18nx^3 y^3 + 36nx^3 y^6 + 16nx^4 y^4 + 48nx^4 y^6 + 36nx^6 y^6,
\]

\[
S_xS_y(f(x, y)) = \frac{2}{9} nx^3 y^3 + \frac{1}{9} nx^3 y^6 + \frac{1}{16} nx^4 y^4 + \frac{1}{12} nx^4 y^6 + \frac{1}{36} nx^6 y^6,
\]

\[
D_x^2D_y^2(f(x, y)) = 2 \times 9^n nx^3 y^3 + 2 \times 18^n nx^3 y^6 + 16^n nx^4 y^4 + 2 \times 24^n nx^4 y^6 + 36^n nx^6 y^6,
\]

\[
D_x^2D_y^2(f(x, y)) = 2 \times 9^n nx^3 y^3 + 2 \times 18^n nx^3 y^6 + 16^n nx^4 y^4 + 2 \times 24^n nx^4 y^6 + 36^n nx^6 y^6.
\]
\[S_x^3 S_y^0 (f(x,y)) = \frac{2n}{9} x^3 y^3 + \frac{2n}{16} x^3 y^6 + \frac{n}{16} x^4 y^4 + \frac{2n}{24} x^4 y^6 + \frac{n}{36} x^6 y^6, \]
\[S_y D_x (f(x,y)) = 2n x^3 y^3 + nx^3 y^6 + nx^4 y^4 + \frac{4n}{3} x^4 y^9 + nx^6 y^6, \]
\[S_x D_y (f(x,y)) = 2nx^3 y^3 + 4nx^3 y^6 + nx^4 y^4 + 3nx^4 y^6 + nx^6 y^6, \]
\[S_x J_f (x,y) = \frac{n}{3} x^6 + \frac{n}{4} y^8 + \frac{2n}{9} x^9 + \frac{n}{5} x^{10} + \frac{n}{12} x^{12}, \]
\[S_x J D_x D_y (f(x,y)) = 3nx^6 + 2nx^8 + 4nx^9 + \frac{4n}{5} nx^{10} + 3nx^{12}, \]
\[S_x^3 Q_2 J D_x^3 D_y^0 (f(x,y)) = \frac{1458}{64} nx^4 + \frac{4096}{216} nx^6 + \frac{11664}{343} nx^7 + \frac{27648}{512} nx^8 + \frac{46656}{1000} nx^{10}. \]

Now from table 1

1. \(M_1 (T_n) = (D_x + D_y) (f(x,y)) |_{x=y=1} = 70n. \)
2. \(M_2 (T_n) = D_x D_y (f(x,y)) |_{x=y=1} = 154n. \)
3. \(n M_2 (T_n) = S_x S_y (f(x,y)) |_{x=y=1} = \frac{73}{147} n. \)
4. \(R_n (T_n) = D_x^2 D_y^0 (f(x,y)) |_{x=y=1} = 2 \times 9^2 n + 2 \times 18^2 n + 16^2 n + 2 \times 24^2 n + 36^2 n. \)
5. \(RR_n (T_n) = S_x^2 S_y^0 (f(x,y)) |_{x=y=1} = \frac{2n}{55} + \frac{2n}{145} + \frac{n}{175} + \frac{2n}{245} + \frac{n}{325}. \)
6. \(SSD (T_n) = (S_y D_x + S_x D_y) (f(x,y)) |_{x=y=1} = \frac{54}{5} n. \)
7. \(H (T_n) = 2S_x J (f(x,y)) |_{x=1} = \frac{98}{45} n. \)
8. \(I (T_n) = S_x J D_x D_y (f(x,y)) |_{x=1} = \frac{54}{5} n. \)
9. \(A (T_n) = S_x^3 Q_2 J D_x^3 D_y^0 (f(x,y)) |_{x=1} = \frac{65348785449}{3704400600} n. \)

\[\square \]

2.2. Computational aspects of Convex Polytopes \(A_n. \) The graph of convex polytope (double antiprism) \(A_n \) can be obtained from the graph of convex polytope \(R_n \) by adding new edges \(b_{i+1}c_i, \) i.e.,
\[V (A_n) = V (R_n) \cap \{ b_{i+1}c_i : 1 \leq i \leq n \} \] as shown in figure 2.

Theorem 2.3. Let \(A_n \) be the double antiprism, then the M-Polynomial of \(A_n \) is
\[M (A_n, x, y) = 2nx^4 y^4 + 4nx^4 y^6 + nx^6 y^6 \] (10)

Proof. Let \(G = A_n \) is double antiprism. It is easy to see form figure 2 that
\[|V (A_n)| = 3n, \]
\[|E (A_n)| = 7n. \]

The vertex set of \(A_n \) has two partitions:
Figure 2. Graph of double antiprism A_6.

$$V_1(A_n) = \{u \in V(A_n): d_u = 4\},$$
$$V_2(A_n) = \{u \in V(A_n): d_u = 6\},$$

such that

$$|V_1(A_n)| = 2n, |V_2(A_n)| = n.$$

The edge set of A_n has three partitions:

$$E_1(A_n) = \{e = uv \in E(A_n): d_u = d_v = 4\},$$
$$E_2(A_n) = \{e = uv \in E(A_n): d_u = 4, d_v = 6\},$$
$$E_3(A_n) = \{e = uv \in E(A_n): d_u = 6, d_v = 6\},$$

From figure 2,

$$|E_1(A_n)| = 2n, |E_2(A_n)| = 4n, |E_3(A_n)| = n,$$

Now from the definition of the M-polynomial

$$M(A_n, x, y) = \sum_{i\leq j} m_{ij}(A_n) x^i y^j$$

$$= \sum_{4\leq i} m_{44}(A_n) x^4 y^4 + \sum_{4\leq i} m_{46}(A_n) x^4 y^6 + \sum_{5\leq i} m_{66}(A_n) x^6 y^6$$

$$= \sum_{uv \in E_1} m_{44}(A_n) x^4 y^4 + \sum_{uv \in E_2} m_{46}(A_n) x^4 y^6 + \sum_{uv \in E_3} m_{66}(A_n) x^6 y^6$$

$$= |E_1| x^4 y^4 + |E_2| x^4 y^6 + |E_3| x^6 y^6$$

$$= 2nx^4 y^4 + 4nx^4 y^6 + nx^6 y^6.$$

\square
Now we compute some degree-based topological indices of double antiprism from this M-polynomial.

Proposition 2.4. Let A_n be the double antiprism, then

1. $M_1(A_n) = 68n$.
2. $M_2(A_n) = \frac{23}{2}n$.
3. $M_2(A_n) = \frac{23}{3}n$.
4. $R_n(A_n) = n(4 \times 24^a + 36^a + 2 \times 16^a)$.
5. $RR_n(A_n) = n \left(\frac{2}{10^a} + \frac{4}{21^a} + \frac{1}{30^a} \right)$.
6. $SSD(A_n) = \frac{4}{3}n$.
7. $H(A_n) = \frac{11}{15}n$.
8. $I(A_n) = \frac{83}{5}n$.
9. $A(A_n) = \frac{649964}{3375}n$.

2.3. Computational aspects of Convex Polytopes. S_n

The graph of convex polytope (double antiprism) S_n can be obtained from the graph of convex polytope Q_n by adding new edges $c_i c_{i+1}$, i.e., $V(S_n) = V(Q_n) and V(S_n) - V(Q_n) = \{ c_i c_{i+1} \mid 1 \leq i \leq n \}$ as shown in figure 3.

![Figure 3. Graph of double antiprism S_6.](image)

Theorem 2.5. Let S_n be the double antiprism, then the M-Polynomial of S_n is

$$M(S_n; x, y) = 2nx^3y^3 + 2nx^3y^5 + 4nx^5y^5.$$ (11)

Proof. Let $G = S_n$ be the double antiprism. It is easy to see form figure 3 that

$$|V(S_n)| = 4n,$$
$$|E(S_n)| = 8n.$$

The vertex set of S_n has two partitions:

- $V_1(S_n) = \{ u \in V(S_n) : d_u = 3 \}$,
- $V_2(S_n) = \{ u \in V(S_n) : d_u = 5 \}$,
such that

$$|V_1(S_n)| = 2n, |V_2(S_n)| = 2n.$$

The edge set of A_n has three partitions:

$$E_1(S_n) = \{ e = uv \in E(S_n) : d_u = d_v = 3 \},$$

$$E_2(S_n) = \{ e = uv \in E(S_n) : d_u = 3, d_v = 5 \},$$

$$E_3(S_n) = \{ e = uv \in E(S_n) : d_u = d_v = 5 \}.$$

From figure 3,

$$|E_1(S_n)| = 2n, |E_2(S_n)| = 2n, |E_3(S_n)| = 4n,$$

Now from the definition of the M-polynomial

$$M(S_n; x, y) = \sum_{i \leq j} m_{ij}(S_n) x^i y^j$$

$$= \sum_{3 \leq i} m_{33}(S_n) x^3 y^3 + \sum_{3 \leq i} m_{35}(S_n) x^3 y^5 + \sum_{5 \leq i} m_{55}(S_n) x^5 y^5$$

$$= \sum_{u \in E_1} m_{33}(S_n) x^3 y^3 + \sum_{u \in E_2} m_{35}(S_n) x^3 y^5 + \sum_{u \in E_3} m_{55}(S_n) x^5 y^5$$

$$= |E_1| x^3 y^3 + |E_2| x^3 y^5 + |E_3| x^5 y^5$$

$$= 2nx^3 y^3 + 2nx^3 y^5 + 4nx^5 y^5.$$

Now we compute some degree-based topological indices of double antiprism from this M-polynomial.

Proposition 2.6. Let A_n be the double antiprism, then

1. $M_1(S_n) = 68n.$
2. $M_2(S_n) = 148n.$
3. $M_3(S_n) = \frac{116}{235} n.$
4. $R_{\alpha}(S_n) = 2n(9^{\alpha} + 15^{\alpha} + 2 \times 25^{\alpha}).$
5. $RR_{\alpha}(S_n) = 2n\left(\frac{1}{15^\alpha} + \frac{1}{15^\alpha} + \frac{2}{25^\alpha} \right).$
6. $SSD(S_n) = \frac{248}{15} n.$
7. $H(S_n) = \frac{59}{14} n.$
8. $I(S_n) = \frac{61}{14} n.$
9. $A(S_n) = \frac{22541}{128} n.$
3. Conclusions and Discussions

We computed closed forms of M-polynomial of three general classes of convex polytopes at first. Then we derived as many as nine degree-based topological indices such as first and second Zagreb indices, modified second Zagreb index, Symmetric division index, Augmented Zagreb index, Inverse-sum index etc.

Competing Interest

The authors declare no competing interest.

REFERENCES

Muhammad Riaz
Department of Mathematics and Statistics, The University of Lahore, Pakistan.
e-mail: mriazshab@gmail.com

Wei Gao
School of Information Science and Technology, Yunnan Normal University, Kunming 650500, China.
e-mail: gaowei@ynnu.edu.cn

Abdul Qudair Baig
Department of Mathematics, The University of Lahore, Pakpattan Campus, Pakistan.
e-mail: aqbaig1@gmail.com